COMPOSITION DE PHYSIQUE ET SCIENCES DE L'INGÉNIEUR - (X)

(Durée : 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

Pompe à chaleur

La pompe à chaleur est un dispositif qui, en mode "chauffage" puise l'énergie thermique dans l'air, dans le sol ou dans l'eau des nappes phréatiques, pour la transférer vers le local à réchauffer. Elle est constituée d'un circuit fermé dans lequel circule un fluide caloporteur à l'état liquide, gazeux ou biphasé selon les éléments qu'il traverse. La circulation se fait en régime permanent; on néglige les variations d'énergies cinétiquc et de pesanteur.

Les trois parties de l'épreuve sont indépendantes et traitent successivement de la thermodynamique de la pompe à chaleur, d'une étude mécanique du compresseur et de la régulation thermique de l'installation.

1 Thermodynamique de la pompe à chaleur

1.1 Diagramme de Mollier

Le diagramme de Mollier (figure 1) représente le logarithme de la pression p en fonction de l'enthalpie massique h du fluide caloporteur et permet ainsi de représenter l'évolution de l'état thermodynamique du fluide au cours du cycle de la pompe à chaleur.

1. Montrer qu'à pression constante, la température T est une fonction croissante de h. Est-elle strictement croissante?
2. Comment lit-on sur ce diagramme ce qui se nommait autrefois la chaleur latente massique de vaporisation à la pression p ?
3. Cette question concerne les courbes isothermes dans le diagramme de Mollier.

Fig. 1: Diagramme de Mollier simplifié.
a) Quelle est a priori leur allure pour la phase liquide, supposée incompressible et indilatable?
b) Quelle est a priori leur allure pour la phase gazeuse, modélisée comme un gaz parfait?
c) Quelle est a priori leur allure dans la zone de changement d'état?
4. Rappeler l'expression de la différentielle de l'enthalpie massique h, considérée comme fonction de l'entropie massique s et de la pression p. On notera v le volume massique.
5. Montrer que, dans le diagramme de Mollier, la pente des courbes isentropiques est positive.
6. Montrer que, sur une courbe isenthalpique du diagramme de Mollier, l'entropie est une fonction décroissante de la pression.
7. On note h_{A} et h_{B} les enthalpies massiques du fluide aux points A et B du circuit. Le fluide reçoit d'une part le travail massique utile, fourni par le compresseur, w (et qui ne comprend donc pas le travail des forces de pression nécessaire pour faire entrer et sortir le fluide du volume de contrôle), d'autre part l'énergie thermique q. Montrer que $h_{B}-h_{A}=w+q$.

1.2 Cycle de la pompe à chaleur

Le cycle de la pompe à chaleur se compose de quatre étapes (figure 2), en dehors desquelles les échanges thermiques ou mécaniques sont supposés nuls:

- Compression : le gaz subit une compression adiabiatique et réversible qui l'amène de l'état (1) $\left(p_{1}, T_{1}\right)$ à l'état (2) $\left(p_{2}, T_{2}\right)$. On note w le travail massique reçu par le fluide.
- Condensation : le gaz se liquéfie totalement à pression constante p p_{2} jusqu’à la température T_{3}. Il cède de l'énergie à la source chaude, et l'on note $q_{23}<0$ l'éncrgie massique échangée.
- Détente : le fluide traverse un tuyau indéformable et ne permettant pas les échanges thermiques. La pression du fluide redescend jusqu'à p_{1} et sa température vaut alors T_{4}.

Fig. 2: Cycle frigorifique d'une pompe à chaleur ; les flèches épaisses indiquent le sens des transferts énergétiques.

- Évaporation : le liquide s'évapore totalement à pression constante p_{1} jusqu'à la température T_{1}. Il reçoit l'énergie massique $q_{41}>0$ de la source froide.

8. Montrer que la phase de détente est isenthalpique.
9. Représenter sur un diagramme de Mollier $(\ln p, h)$ les quatre étapes du cycle, ainsi que les quantités q_{23}, q_{41} et w.
10. Quelle est relation liant les quantités q_{23}, q_{41} et w ? Représenter ces quantités sur le schéma de la question 9 .
11. Justifier la définition de l'efficacité de la pompe à chaleur $\eta=-q_{23} / w$ et montrer que $\eta>1$.
12. Le Document Réponse représente le diagramme de Mollier d'un fluide caloporteur courant. Dans la perspective de vos réponses à la question 3, la phase liquide y apparaît-elle incompressible et indilatable? La phase gazeuse y apparaît-elle comme un gaz parfait?
13. On donne $p_{1}=0,3 \mathrm{MPa}, p_{2}=1 \mathrm{MPa}, T_{1}=5^{\circ} \mathrm{C}$ et $T_{3}=0^{\circ} \mathrm{C}$. Représenter le cycle correspondant dans le Document Réponse, à rendre avec votre copie. Pour chacun des points (1) à (4) du cycle, indiquer dans un tableau les valeurs numériques respectives de l'enthalpie massique, la pression et la température. Indiquer aussi l'état du fluide en chacun de ces points.
14. À partir du diagramme de Mollier, estimer numériquement l'efficacité de la pompe à chaleur. Comparer la valeur trouvée à celle qui correspondrait à un cycle de Carnot fonctionnant entre les mêmes températures.
15. Calculer le débit massique du fluide permettant d’assurer une puissance de chauffage de 4 kW .

1.3 Cycle du compresseur

Fig. 3: Schéma de principe d'un compresseur (ici, en phase d'aspiration). Les éléments constitutifs en sont le cylindre, le piston, le clapet d'aspiration (A), le clapet de refoulement (R), la bielle et le volant.

Le compresseur. supposé parfaitement calorifugé. assure la circulation du fluide caloporteur entre les circuits basse pression et hate pression (figure 3). Le crele du compresseur. supposé réversible. sceffectue en trois temps:

Aspiration: Le clapet (A) est ouvert of le clapet (R) fermé. Le piston. de section S. descend. le fluide pénètre dans le cylindre.
Compression : Les deux clapets sont fermés. Le piston monte. La pression du fluide augmente.

Refoulement : Lorsque la pression dans le cylindre atteint la pression m. iR: sourre et le fluide est évacué sous la pression p. jusqu’au moment ou le piston atteint la fin de sa course. On suppose alors qu il n'y a plus de fluide dans le crlindire (le volune dit mort est nul).
Puis. le clapet de refoulement se ferme et un nouveau crele commence.
On suppose que la fermeture de (R). Jouverture de (A) et la chute de la pression de p_{2} à p_{1} sont instantanées et simultanées.
16. En notant v_{1} et v_{2} les volumes massiques au début et à la fin de la phase de compression, représenter dans un diagramme (p, v) les trois phases do fonctionnement du compresseur.
17. Comment détermine-t-on. sur ce diagramme. le tratail masisique fourni au cours diun "rcle"
18. La phase de compression est isentropique: le fluide est considéré comme un gaz parfait dout les capacités calorifiques massiques isobare c_{p} et isochore c_{c} sont constantes. Déterminer
lo travail reçu par ce flude pour un aller-retom du piston en fonction de p_{1}. ir. p_{2}. 2_{2} et de $?=c_{p} / c_{r}$.
19. On dome $p_{1}=0.3 \mathrm{MPa} . p_{2}=1 \mathrm{MPa} . T_{1}=5^{\circ} \mathrm{C}$ et $; c_{p} / c_{r}=1.12$. Calculer T_{2}. Comparer avec la valeur déterminée graphiquement à la question 13.

2 Différentes technologies de compresseur

2.1 Dispositif bielle manivelle "classique"

La figure 4 présente certains éléments de la modélisation du système de compression : la rotation autour de O du volant manivelle (1) par rapport au bâti (0) est paramótróe par langle A_{1} : celle autour de B de la bielle (2) est paramétrée par l'angle θ_{2} que fait cette dernière avec l’axe \vec{a}_{1}. En B se trouve nue aticulation entre la bielle of l e piston (3) dont la translation rectiligne est paramétrée par la distance $O B$. notée x_{3}. On pose $O A=c$. (ceest l'encentrique) et $A B=l$.

On introduiret an besoin les quantités sans dinemsion $k=\frac{c}{t}$ et $A_{3}=\frac{x_{3}}{l}$. Le diamètre du piston est noté D. Lorigine des temps t est telle que $\theta_{1}(0)=0$.

Fig. 4: Schéma de compresseur classique.
20. Le volant (1) est animé d'un mouvement de rotation de vitesse angulaire constante Ω.
a) Établir la redation. dite loi entré sortir. qui relie x_{3} à θ_{1}.
b) Tracer laallure de $x_{3}\left(\theta_{1}\right)$ sur un tour du volant pour $k=\frac{1}{2}$.
c) Exprimer litaralement la cylindre V de la pompe (rolume balavé par le cylindre).
21. Exprimer la vitosice co du piston par rapport an bati en fonction de 0 . de Ω et des grandeurs géométriques perfinentes. En déduire l'expression du débit instantanó q du fluide refoulé par la pompe: tracer l’allure de $q\left(\theta_{1}\right)$ en précisant les phases de refoulement et d'aspiration.
22. Le volant est colrainć en rotation à unc vitósse $\Omega=1800$ tr.mn ${ }^{-1}$. générant un déplacement alternatif du piston à me fréquence chevée, ce qui ne va pas sans difficulté même pour un piston de masse $M=640 \mathrm{~g}$. La pression durant la phase de refoulement est $p=1 \mathrm{MPa}$.

Lexcentrique e vant 20 min et le diamètre D du piston est de 40 mm .
a) En précisant chaque fois les hepothèses que vous serez conduit à formuler. faire le bilan des actions mécaniques agissant sur le piston.
b) Évaluer numériquement les actions dues respectivement à la pression et à l'accélération. Conclure sur l'importance relative des forces de pression et des offets dynamicues.
c) Peut-on déterminer totalement l'action mécanique de la bielle sur le piston avec ce seul bilan? Proposer un isolement supplémentaire adin dobtenir ce résultat.
23. Compte tenu de la valeur de rapport k, quelle est la valeur maximale de l'angle entre la bielle et le piston? Discuter les éventuels problèmes que l'action de contact "en biais" peut cngendrer.

2.2 Dispositif à piston oscillant

Le système à piston oscillant représenté figure $\overline{5}$ pornet de réduire le problème dù à l'angle résiduel entre la biclle of le piston (2). La rotation de l'ensemble oscillant \{piston-cylindre\} est paramétrée par l’angle θ_{2} de la figure. L’articulation entre le cylindre (3) et le báti (0) se fait au point B. La translation relative entre (2) et (3) est paramétrée par la distance AB notée x_{32}. La longueur $\mathrm{OA}=\epsilon$ et la distance $\mathrm{OB}=h$ sont constantes. On pose $q=\frac{\epsilon}{h}$.

Fic: 5: Schéma de compresseur à piston oscillant.
24. Établir la relation reliant x_{32} à θ_{1}. Tracer l'allure de $x_{32}\left(\theta_{1}\right)$ pour $q=\frac{1}{2}$ et $0 \leq \theta_{1} \leq 2 \pi$.

2.3 Comparaison des deux dispositifs

On note a_{3} l'accéleration du piston classicue et $a_{3,2}$ l $^{\prime}$ accélération relative du piston oscillant par rapport an cylindre: cette dernière grandeur se réfère donc à un repère non galiléen. La figure 6 représente a_{3} et a_{32} ell unité adimensionnéc ot pour un tour de rolant ($0 \leq \theta_{1} \leq 2 \pi$).
25. Commenter la figure 6 . Le dispositif à piston oscillant est-il avautageux du point de vue cinématique? Sans développer aucun calcul, proposer une manière de cuatuifier l'intérêt du

FIG. 6: Gauche : accélération du piston par rapport au bâti (en unité réduite) en fonction de θ_{1}. Droite : accélération relative du piston par rapport au cylindre (en unité réduite). en fonction de θ_{1}.
systeme \{piston of crlindre\} oscillants du point de tue des actions mécaniques excrcées sur le cylindre.

3 Contrôle en température

Le local, de capacité calorifique constante C_{T}, est chauffé par une pompe à chaleur dont la puissance de chanffe est notée P_{Q}. La température extérieure est constante on la note T_{0}.

L’utilisation de la pompe nécessite une boucle d’asservissement durégime de fonctionmement à la température du local. Il faut pour ce faire considérer le systeme de transfort thermique, le système électrique qui pilote P_{Q} et le couplage de ces deux systèmes.

Notations pour toute la suite. Les grandeurs temporelles et leurs transformées de Laplace seront désignées par le mème srmbole. ces dernières étant sumontées dun tilde (\sim) : la transformée de Laplace de $Z(t)$ sera ainsi noté $\dot{Z}(p)$. On supposera que les conditions initiales des grandeurs temporelles sont mulles $(Z(0)=0)$. ce qui. sans nuire à la généralité du problème. rend plus commode l'écriture des transformées de Laplace des diverses dérivées.

3.1 Première modélisation

26. La boucle d’asservissment est telle que la tension dalimentation du moteur. V_{c}. est proportionnelle à ϵ, écart entre la tempórature cible, T_{c}, et la température instantanée du local, T_{L}. supporée uniforme: $V_{c}=h_{C R}\left(T_{c}-T_{L}\right)$: d'autre part. un modèle simplifié de moteur ctablit que la puissance fommo an local par le condenseur de la pompe à chaleur sécrit $P_{Q}=a V_{c}$. de sorte que. en posant $\beta=a K_{C R}$.

$$
\begin{equation*}
P_{Q}(t)=\beta\left(T_{c}-T_{L}(t)\right) \tag{1}
\end{equation*}
$$

La puissance des fuites thermiques. ©. est supposée etre proportionnelle à lécart entre T_{L} et $T_{0}:$ notant $H(H>0)$ le coefficient de proportionnalité on a donc $\Phi=\left(T_{L}-T_{0}\right)$.
a) Établir l'équation différentielle relative à $T_{L}(t)$ at représenter le schéma-bloc du
système faisant apparaitre la contre-róaction. Préciser à quelle condition sur β le système est stable.
b) Exprimer l'errour statique δ_{s} du dispositif (réponse à une consigne échelon). Comment la réduire". À quoi cela correspond-il phesiquement?
27. Quel élément correcteur insérer dans le schéma-bloc de la question 26. et à quel endroit. pour ramener cette erreur staticue à 0 ?

3.1.1 Deuxième modélisation

Convention. Dans tout ce qui suit. lorigine des tompératures sera T_{0} : en d'autres termes. ce que lon nomnera désomais tompérature T_{a} sera en réalité la diffórence entro la température raie T_{a} et T_{1} : on peut aussi bien dire que la température extéricure est fixée à $0^{\circ} \mathrm{C}$. Avec cette convention. la puissance des fuites thermiques sécrit $\Phi=H T_{L}$.

Le moteur chertrique alimentant le compresseur (figure $\overline{\text { }}$) est caractérisé par quatre grandeurs: le couple moteur $C_{m}(t)$ (valeur algébrique de la projection du moment des forces de Laplace sur l'axe de rotation), la vitesse angulaire $\Omega(t)$, la tension d'alimentation $V_{c}(t)$ et le courant $i(t)$. Ce moteur est le siège d’une tension induite $E(t)$. On note R la résistance électrique du circuit (comprenant notamment celle de l'induit). J le moment d’inertie des parties mobiles ramenć à l’axe de rotation et $C_{r}(t)$ l'ensemble des couples exercés sur l’axe de rotation par les éléments autres que lo moteur. Aucun autre moment utile rosistant n`interviendra dans les équations écrites en rariable de Laplace (en particulicr. le moment utile $C_{"}$ lié à laction de la pression dans le compresseur est considéré comme constant en moreme sur un tour: il n̈interviendra donc pas en rariable de Laplace). On admet les relations constitutives suivantes. où les constantes K^{*} et f_{r} sont positives:

$$
\begin{aligned}
V_{c}(t) & =E(t)+\operatorname{Ri}(t) \\
E(t) & =K \Omega(t) \\
C_{m}(t) & =K^{\prime}(t) \\
C_{r}^{\prime}(t) & =f_{r} \Omega \\
J \frac{\mathrm{~d} \Omega}{\mathrm{~d} t} & =C_{m}^{\prime}-C_{r}^{\prime}\left(-C_{u}\right) .
\end{aligned}
$$

Fici. 7: Schéma alectrique simplifié du moteur.
La puissance P_{Q} du moteur est proportiomelle à la vitesse de rotation Ω. ce fue l'on note.
en introduisant la constante positive A.

$$
\begin{equation*}
P_{Q}(t)=A \Omega(t) \tag{2}
\end{equation*}
$$

28. Établir l'expression de la fonction de transfert tension-vitesse sous la forme

$$
\begin{equation*}
\frac{\tilde{\Omega}(p)}{\tilde{V}_{c}(p)}=\frac{k_{e}}{1+\tau_{\epsilon} p} . \tag{3}
\end{equation*}
$$

en exprimant k_{c} et τ_{e} en fonction des domées. Que devient cette fonction de transfert dans la limite $R \rightarrow 0$? Préciser alors la nature du modèle simplifié de la question 26 .
29. Un correcteur (C) (of. question 27), de fonction de transfert $C(p)$, établit le lien

$$
\begin{equation*}
V_{c}(t)=K_{c} \epsilon(t)+\frac{1}{T_{i}} \int^{t} \epsilon(u) \mathrm{d} u, \tag{4}
\end{equation*}
$$

où K_{c}^{*} et T_{i} sont. à ce stade. des paramètres libres. Exprimer $C(p)$.
30. Exprimer $\tilde{P}_{Q}(p)$ en fonction de $\tilde{T}_{c}(p)$ et de $\tilde{T}_{L}(p)$.
31. Exprimer le bilan thermique de la question 26 a en termes de variable de Laplace.
32. En régime harmonique, le carré du module de la fonction de transfert du système en boucle fermée est

$$
\begin{equation*}
|F(. j \omega)|^{2}=\left|\frac{\tilde{T}_{L}(j \omega)}{\tilde{T}_{c}\left(j \omega^{\prime}\right)}\right|^{2} \tag{5}
\end{equation*}
$$

Calculer K_{c} et T_{i} de telle sorte que le dénominateur de cette grandeur soit (à une constante multiplicative près) $D(\omega)=1+\left(\frac{\omega}{\omega_{0}}\right)^{4}$.
33. Exprimer ω_{0}. préciser la réponse indicielle du système ainsi réglé et indiquer l'intérêt d'un tel dénominateur pour la stabilité du système.

